Optimizing Three-Dimensional Trade-Off Problem of Time–Cost–Quality over Multi-Mode Projects with Generalized Logic

Author:

Aminbakhsh Saman1ORCID,Abdulsattar Abdulrahman M.2ORCID

Affiliation:

1. Department of Civil Engineering, Atilim University, Ankara 06830, Turkey

2. Graduate School of Natural and Applied Sciences, Atilim University, Ankara 06830, Turkey

Abstract

Clients typically tend to aim for reasonable prices, minimum possible makespans, and the best quality for the construction projects that they engage in. Evidently, weighing the available offers and coming up with an optimal decision can pose challenges for the decision makers. In this regard, the generation of a tool that helps decision makers strike a proper balance among the conflicting project objectives (i.e., time, cost, and quality) is imperative. To this end, this study proposes a method which assists in the selection of the best compromise choices among the options available for each of the project activities. In addition to the time and cost, the proposed method is designed to bring the quality aspect into the equation as well. To quantify the quality, a value referring to the weighted importance and performance of each activity is used. The proposed method is based on a modified multi-objective genetic algorithm (GA) that incorporates the domination concept for the selection of the best solutions out of the potential candidates. The GA-based method is capable of handling an unlimited number of precedence relationships for each activity, and above all, it is able to capture and unravel any type of logical relationship. This very feature significantly improves the practical relevance of this research, as the parallelization of activities is a common practice in real-life projects. Planners benefit from the various types of relationships (i.e., Start to Start, Start to Finish, Finish to Start, and Finish to Finish), and the concept of lag time frequently introduces parallelization into the network. Overlapped activities, in turn, help reduce the unwanted idle times and speed up the project significantly. Accordingly, in order to demonstrate the application and effectiveness of the proposed model, it has been used in the solution of four time–cost–quality (TCQ) trade-off problems, three of which are generated within the context of this paper. The practiced instances include a small benchmark TCQT problem with 18 activities taken from the literature in addition to more complex 29- and 63-activity TCQTPs produced herein based on benchmark time–cost trade-off problems. The performance of the presented approach is ultimately examined over a large-scale, real-case construction project with over four hundred activities and generalized logic in an unprecedented attempt to validate a model in the realm of TCQTPs. The successful results of the experiments reveal the effectiveness of the proposed model and corroborate the feasibility of its application by the planners amidst arduous decision-making processes.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3