Short-Term Forecasting of Daily Electricity of Different Campus Building Clusters Based on a Combined Forecasting Model

Author:

Wu Wenyu1,Deng Qinli12ORCID,Shan Xiaofang12,Miao Lei12,Wang Rui3,Ren Zhigang12

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China

2. Sanya Science and Education Innovation Park, Wuhan University of Technology, No. 5 Chuangxin Road, Yazhou District, Sanya 572024, China

3. Logistics Support Office, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China

Abstract

In the building field, campus buildings are a building group with great energy-saving potential due to a lack of reasonable energy management policies. The accurate prediction of power energy usage is the basis for energy management. To address this issue, this study proposes a novel combined forecasting model based on clustering results, which can achieve a short-time prediction of daily electricity based on a campus building’s electricity data over the past 15 days. Considering the diversity of campus buildings in energy consumption and functional aspects, the selected campus buildings are firstly classified into three categories using K-Means clustering in terms of their daily power consumption. Compared with the mainstream building energy consumption prediction models, i.e., LSTM and SVR, the results show that the combined forecast model is superior to other models. Furthermore, an average percentage fluctuation (APF) index is found to be close to the MAPE, which can reflect the prediction accuracy in advance.

Funder

Sanya Science and Education Innovation Park of Wuhan University of Technology

Hainan Province Science and Technology Special Fund

Major R&D projects of China Metallurgical Group Corporation

Logistics Support Office of Wuhan University of Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3