Study of Mechanical Response of Tunnels Crossing Active Faults in Different Burial Depths

Author:

Zhang Jiawei12,Zhao Wanhua1,Cui Zhen2ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

There are numerous tunnels worldwide that cross active fault zones. These tunnels are situated in complex geological environments and are subjected to intense seismic activities. When active fault zones experience displacement, tunnels are susceptible to varying degrees of damage. Over the past few decades, many scholars have researched tunnels crossing active fault zones using numerical simulation methods, including finite element analysis, discrete element analysis, and finite difference methods. However, certain aspects have been overlooked, such as the influence of burial depth on tunnels crossing active fault zones. Most prior studies have primarily omitted consideration of tunnel depth and high-stress effects, resulting in disparities between research findings and practical engineering outcomes. In light of these issues, this paper analyzes the impact of ground stress fields at different burial depths on tunnels crossing active fault zones. It compares the mechanical response characteristics of deep-buried and shallow-buried tunnels after experiencing fault displacement, elucidating variations in displacement patterns, stress, and strain at different burial depths. The results indicate that: (1) Deep-buried and shallow-buried tunnels exhibit an “S”-shaped deformation pattern. (2) Regarding the strain distribution within the tunnel, the affected regions are predominantly concentrated within the fault zone. (3) Regarding the stress distribution within the tunnel, deep-buried tunnels experience a broader range of stress variations distributed across the fault zone. In contrast, shallow-buried tunnels predominantly exhibit stress concentration at the fault slip plane. (4) By analyzing the patterns of tunnel damage at different burial depths, it is observed that burial-depth effects notably influence tunnels with a burial depth less than 200 m. In comparison, tunnels exceeding 300 m gradually reduce the impact of burial depth. These findings can be essential theoretical references for studying tunnels crossing active fault zones in deep-buried environments.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3