Shear Behavior and Analytical Method of Vertically Corrugated Steel Plate Shear Walls with Inelastic Buckling of Infilled Plates

Author:

Cao Qiang1,Huang Jingyu23

Affiliation:

1. College of Transportation Engineering, Tongji University, Shanghai 201804, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

3. National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China

Abstract

This paper presents numerical investigations of the shear performance of vertically corrugated steel plate shear walls (CvSPSWs) with inelastic buckling of infilled plates under lateral loads. A numerical model was developed and verified by an experiment. Subsequently, a series of parametric analyses were conducted to investigate the effects of the concerned parameters on the shear performance of CvSPSWs, such as the connection type, height–thickness ratio, aspect ratio, horizontal subpanel width, and surrounding beam stiffness, in which the loading mechanism, buckling behavior, and failure modes of the corrugated steel plate (CSP) in the CvSPSW were discussed. The results show that CvSPSWs exhibit large initial stiffness, in-plane and out-of-plane strength, and good displacement ductility. Further, a formula for predicting the buckling strength of the CSP in the CvSPSW is proposed, and the effect of the section stiffness of the inclined subpanel on buckling strength and the development of the tension field of the CSP was investigated. In addition, simplified analytical models for CvSPSWs were examined to simplify the elastoplastic analysis of CvSPSWs. The results show that the plate-frame interaction model and the modified strip model can reproduce the shear performance of CvSPSWs with good accuracy.

Funder

National 13th Five-Year Science and Technology Support Program of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3