Affiliation:
1. Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, China
2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
3. Pingan Coal Mining Engineering and Technology Research Institute Co., Ltd., Huainan 232033, China
Abstract
Double liquid grouting materials (DLGMs) are composed of slurry A and slurry B. In response to the need for sustainable development, there is currently a focus on improving the utilization rate of resources. In this paper, industrial solid waste fly ash, slag, and ordinary Portland cement were used to prepare slurry A, while sodium silicate was used as slurry B. Slurry C was made by adding slurry B to slurry A. The mix design parameters of the DLGMs, with large amounts of fly ash, were optimized based on the response surface method. The results showed that the relative content of cement and the reactivity and morphological effect of supplementary cementitious materials (fly ash and slag) were the main factors affecting the operable time, viscosity, and stability of slurry A. The relative content of cement and the sodium silicate modulus were the main factors affecting the operable time of the DLGMs. Compared to the C30F70S0-Z3.3 group (where C, F, S, and Z represented cement, fly ash, slag, and sodium silicate modulus, respectively), the operable time of the C0F70S30-Z3.3 group increased by approximately 36 min. As the sodium silicate modulus was lowered to 2.3, the operable time of the C0F70S30-Z2.3 group increased by about 32 min compared to that of the C30F70S0-Z2.3 group. The established model and response surface can well reflect the influence of multiple factors on the properties of the DLGMs. When the mass ratio of cement/fly ash/slag in slurry A was 7.5%: 70%: 22.5%, and the sodium silicate modulus and content of slurry B were 2.8 and 10%, respectively, the 28-day compressive strength of the DLGMs can reach up to 11.3 MPa. The content of fly ash was the most significant factor affecting the 28-day compressive strength of the DLGMs, followed by the sodium silicate content. The least influential factor was the sodium silicate modulus. The XRD and SEM results showed that a large amount of Ca2+ produced by cement hydration can quickly react with [SiO4]4- in sodium silicate to form C-S-H gel. Moreover, it also promoted the hydration of C3S and C2S in grouting to produce more C-S-H gel, which was conducive to the alkali activation of slag and fly ash, resulting in a denser microstructure and hence, yielded obvious increases in the compressive strengths of the DLGMs.
Funder
National Natural Science Foundation of China
the Key Research and Development Projects in Anhui Province
the Cultivation Project of Scientific Research Reserve of Anhui Jianzhu University
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献