Reinforcement Learning with Dual Safety Policies for Energy Savings in Building Energy Systems

Author:

Lin Xingbin1,Yuan Deyu1,Li Xifei1

Affiliation:

1. Gridsum Inc., 229 North 4th Ring Rd., Beijing 100083, China

Abstract

Reinforcement learning (RL) is being gradually applied in the control of heating, ventilation and air-conditioning (HVAC) systems to learn the optimal control sequences for energy savings. However, due to the “trial and error” issue, the output sequences of RL may cause potential operational safety issues when RL is applied in real systems. To solve those problems, an RL algorithm with dual safety policies for energy savings in HVAC systems is proposed. In the proposed dual safety policies, the implicit safety policy is a part of the RL model, which integrates safety into the optimization target of RL, by adding penalties in reward for actions that exceed the safety constraints. In explicit safety policy, an online safety classifier is built to filter the actions outputted by RL; thus, only those actions that are classified as safe and have the highest benefits will be finally selected. In this way, the safety of controlled HVAC systems running with proposed RL algorithms can be effectively satisfied while reducing the energy consumptions. To verify the proposed algorithm, we implemented the control algorithm in a real existing commercial building. After a certain period of self-studying, the energy consumption of HVAC had been reduced by more than 15.02% compared to the proportional–integral–derivative (PID) control. Meanwhile, compared to the independent application of the RL algorithm without safety policy, the proportion of indoor temperature not meeting the demand is reduced by 25.06%.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference43 articles.

1. Understanding energy demand behaviors through spatio-temporal smart meter data analysis;Niu;Energy,2021

2. Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control;Biemann;Appl. Energy,2021

3. Geng, G., and Geary, G.M. (1993, January 13–16). On performance and tuning of PID controllers in HVAC systems. Proceedings of the IEEE International Conference on Control and Applications, Vancouver, BC, Canada.

4. A review of building climate and plant controls, and a survey of industry perspectives;Royapoor;Energy Build.,2018

5. Theory and applications of HVAC control systems–A review of model predictive control (MPC);Afram;Build. Environ.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3