A New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment

Author:

Aksakal Berrak,Ulutaş AlptekinORCID,Balo FigenORCID,Karabasevic DarjanORCID

Abstract

One of the easiest and most common methods for effectively reducing building energy demand is the selection of adequate thermal insulation materials. Thermal insulation is a substantial contribution and an evident, logical and practical first stage toward improving energy performance, particularly in envelope-load-dominant structures located in difficult climate zones. Today’s insulating materials come in a broad variety of sizes and shapes, each with its a own qualities. It is well acknowledged that material selection is one of the most difficult and time-consuming aspects of a construction project. Therefore, choosing the right insulation material is also a very important topic to increase energy efficiency. However, it is a complex problem with many criteria and alternatives. This study integrates three different multi criteria decision making methods, which are Fuzzy Best-Worst Method, CRiteria Importance Through Inter-criteria Correlation and Mixed Aggregation by COmprehensive Normalization Technique. In this study, the following eight criteria were taken into account in the evaluation: thermal conductivity, periodic thermal transmittance, specific heat, density, decrement factor, surface mass, thermal transmittance, and thermal wave shift. The first method will be used to find the subjective weights, while the second method will be used to find the objective weights. The third method will be used to rank the insulation materials. According to the results of the Fuzzy Best-Worst Method, the most important criterion was determined as thermal conductivity. According to the results of the CRiteria Importance Through Inter-criteria Correlation, the most important criterion was determined as thermal wave shift. According to the results of the Mixed Aggregation by COmprehensive Normalization Technique, the top 10 insulation materials are as follows: polyisocyanurate, polyurethane (1), polyurethane (2), wood fiber (1), kenaf, jute, cellulose (2), wood fiber (1), XPS (1) and XPS (2). According to the results of the proposed method, polyisocyanurate was determined as the best insulation material for healthier environment. This study makes two contributions to the literature: first, a new hybrid method was developed in this study. Secondly, in this study, the newly introduced Mixed Aggregation by COmprehensive Normalization Technique method was used.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3