Abstract
To predict the structural behaviour of ancient stone masonry walls is still a challenging task due to their strong heterogeneity. A rubble-stone masonry modeling methodology using a 2D particle model (2D-PM), based on the discrete element method is proposed given its ability to predict crack propagation by taking directly into account the material structure at the grain scale. Rubble-stone (ancient) masonry walls tested experimentally under uniaxial compression loading conditions are numerically evaluated. The stone masonry numerical models are generated from a close mapping process of the stone units and of the mortar surfaces. A calibration procedure for the stone-stone and mortar-mortar contacts based on experimental data is presented. The numerical studies show that the 2D-PM wall models can predict the formation and propagation of cracks, the initial stiffness and the maximum load obtained experimentally in traditional stone masonry walls. To reduce the simulation times, it is shown that the wall lateral numerical model adopting a coarser mortar discretization is a viable option for these walls. The mortar behaviour under compression with lateral confinement is identified as an important micro-parameter, that influences the peak strength and the ductility of rubble-masonry walls under uniaxial loading.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference31 articles.
1. Ordinary Masonry Walls–Experimental Study with Unstrengthened and Strengthened Specimens;Pinho;Ph.D. Thesis,2007
2. Numerical simulation of cracking in structural masonry;Rots;Heron,1991
3. Multisurface Interface Model for Analysis of Masonry Structures
4. Discrete element modelling of the seismic behaviour of stone masonry arches;Lemos,1998
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献