Experimental Study on Bearing Behavior and Soil Squeezing of Jacked Pile in Stiff Clay

Author:

Xi Banglu12ORCID,Li Guangzi2,Chen Xiaochuan1

Affiliation:

1. Anhui Province Key Laboratory of Green Building and Assembly Construction, Anhui Institute of Building Research & Design, Hefei 230031, China

2. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

In order to study the bearing behavior and soil-squeezing of jacked piles in stiff clay, two groups of pile penetration tests were performed, with a rough pile that can reproduce the quick-shear behavior of the pile–soil interface, i.e., group 1 in stiffer clay, and group 2 in softer clay for comparison. For each group, the adjacent pile was additionally penetrated at different pile spacings to study the soil-squeezing effect on an adjacent pile. The results show that the penetration resistance increased rapidly at the beginning and then increased at a lower rate. This is because the resistance at the pile end increased rapidly at the beginning and then kept stable with fluctuations, whereas the resistance at the pile side continually increased due to the increasing contact area. Therefore, the ratio of the resistance at the pile end to the total penetration resistance exhibited a softening behavior, which first increased to a peak and then gradually decreased. In addition, there was soil-squeezing stress and soil-squeezing displacement in the ground and adjacent piles due to pile penetration. In stiffer clay, the soil-squeezing stress was larger than that in softer clay due to the higher strength, whereas the soil-squeezing displacement was smaller than that in softer clay due to the low compressibility. In addition, the nonlinear equation form y = ae−bx can be employed to describe the effect of pile spacing on the vertical flotation, horizontal deviation, and pile strain of the adjacent pile.

Funder

the Science and Technology Plan for Housing and Urban Rural Construction in Anhui Province

Anhui Province Key Laboratory of Green Building and Assembly Construction

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3