Thermoelastic Behaviors of Temperature-Dependent Multilayer Arches under Thermomechanical Loadings

Author:

Zhang Zhong1,Zhao Wenjie1,Sun Ying1,Gu Zhenyuan1ORCID,Qian Wangping12ORCID,Gong Hai3

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. Nantong Prefabricated Building and Intelligent Structure Research Institute, Nantong 226014, China

Abstract

This work presents analytical solutions for thermoelastic behaviors of multilayer arches with temperature-dependent (TD) thermomechanical properties under thermomechanical loadings. The temperature is varied across the thickness of the arch. Firstly, an arched-slice model is developed, which divides every layer of the arch into numerous hypothetical arched slices with uniform thermomechanical properties. Based on the model, the nonlinear heat conduction equations across the thickness of the arch are solved using the iteration approach, and then the thermoelastic equations obtained from the two-dimensional thermoelasticity theory are solved using the state-space approach and transfer-matrix approach. The present solutions are compared with those obtained using the finite element method and the Euler–Bernoulli theory (EBT). It is found that the error of the EBT increases when the angle of the arch increases or the length-to-thickness ratio decreases. Finally, numerical examples are conducted to analyze the effects of surface temperature and TD thermomechanical properties on the temperature, displacement, and stress distributions of a sandwich arch. The results show that the temperature dependency of thermomechanical properties is a key parameter in predicting the thermoelastic behaviors of the arch in a high-temperature environment.

Funder

National Natural Science Foundation of China

Nantong City Social Livelihood Science and Technology Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3