Comparative Study of Optimal Flat Double-Layer Space Structures with Diverse Geometries through Genetic Algorithm

Author:

Shahbazi Yaser1ORCID,Abdkarimi Mahsa1,Ahmadnejad Farhad1ORCID,Mokhtari Kashavar Mohsen1ORCID,Fotouhi Mohammad2ORCID,Pedrammehr Siamak3ORCID

Affiliation:

1. Faculty of Architecture and Urbanism, Tabriz Islamic Art University, Tabriz 5164736931, Iran

2. Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

3. Faculty of Design, Tabriz Islamic Art University, Tabriz 5164736931, Iran

Abstract

This paper investigates the structural performance of flat double-layer grids with various constitutive units, addressing a notable gap in the literature on diverse geometries. Six common types of flat double-layer grids are selected to provide a comprehensive comparison to understand their structural performance. Parametric models are built using Rhino and Grasshopper plugins. Single- and multi-objective optimization processes are conducted on the considered models to evaluate structural mass and maximum deflection. The number of constitutive units, the structural depth, and the cross-section diameter of the members are selected as design variables. The analysis reveals that the semi-octahedron upon square-grid configuration excels in minimizing structural mass and deflection. Furthermore, models lacking a full pyramid form exhibit higher deflections. Sensitivity analyses disclose the critical influence of the design variables, particularly highlighting the sensitivity of structural mass to the number of constitutive units and cross-section diameter. These findings offer valuable insights and practical design considerations for optimizing double-layer grid space structures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3