Analysis of a Bending-Stressed Pile in Interaction with Subsoil

Author:

Jendzelovsky Norbert1,Tvrda Katarina1ORCID

Affiliation:

1. Faculty of Civil Engineering, STU in Bratislava, Radlinskeho 11, 810 05 Bratislava, Slovakia

Abstract

This study explored reinforced concrete piles located in a flexible half-space and loaded with external loads, considering various contact elements and the connection between the pile and the ground massif. Piles are mainly solved as axially loaded elements stressed by a vertical force. However, there are also several cases in the construction industry where a pile is stressed by a horizontal force or by a bending moment, producing a bending loaded pile. A static model of a pile and the surrounding subsoil was constructed using software based on FEM. The pile was modelled from 3D finite elements that were rotationally symmetric around the vertical axis of the pile. Additionally, the flexible half-space was modelled from 3D elements that were rotationally symmetrical around the piles. The boundary conditions were applied on the surfaces around the perimeter and at the bottom of the ground massif. The flexible half-space was modelled up to the area where there was zero deformation. The presented analysis focused on the description of different types of contact elements between the surface of the reinforced concrete pile and the surrounding ground mass. This interaction was modelled as a fixed connection or as point-to-point contact, and a contact surface. In the next part, different boundary conditions on the pile bottom were considered. Floating piles, supported by joints or firmly woven into the ground massif, were considered. All these outputs based on FEM were compared with the analytical solution of the bent pile that was published in the 1980s. The deformations and internal forces during different modelling of the contact between the edge of the concrete pile and the surrounding ground mass were compared. The higher values of the studied quantities were for rigid connections, which is logical. For contact elements, the property of the contact was considered. This property introduces less stiffness, and thus, the resulting values were lower compared to those for a fixed connection. The presented analysis of the FEM analytical and numerical solution is also very valuable for engineers working in construction.

Funder

VEGA

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3