Finite Element Investigation of a Novel Cold-Formed Steel Shear Wall

Author:

Xie Zhiqiang1,Bi Ye1,Fan Ying1,Gao Chengwei1,Zhang Xiangdong2,Feng Yin2,Zhou Daxing2,Dong Lei2

Affiliation:

1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

2. China Railway Construction Group Co., Beijing 100070, China

Abstract

In this paper, a novel corrugated steel sheet central sheathed cold-formed steel (CCS-CFS) shear wall is proposed. This shear wall can address the problems of low shear strength and ductility in conventional cold-formed steel (CFS) shear walls caused by screw connection failure and eccentric sheet arrangement. A numerical simulation method for the novel shear wall was developed and verified through cyclic loading test results of two full-size shear wall specimens. Parameter analysis was then conducted to investigate the effects of screw spacing, sheet thickness ratio, and aspect ratio on the seismic performance of these shear walls, accompanied by design recommendations. The results indicated that this innovative shear wall configuration can effectively resolve the connection failure between the frame and the sheet. Furthermore, the CCS-CFS shear wall can effectively improve shear strength, energy dissipation capacity, and ductility. The developed numerical simulation method can accurately capture the hysteretic properties and failure modes of shear walls. In addition, it can address the shortcomings in conventional models that neglect the mixed hardening characteristic of steel and metal damage criteria, resulting in inaccurate simulation results and unrealistic buckling modes. The principal failure modes observed in the novel shear wall were identified as the plastic buckling of corrugated steel sheathing and the distortional buckling of the end stud. Reducing the screw spacing has a limited impact on its shear strength. It is recommended that the sheet thickness ratio of the CCS-CFS shear wall should be greater than 2.0, while the aspect ratio can be relaxed to 10:4.

Funder

National Natural Science Foundation of China

Scientific Research of Beijing Municipal Education Commission

Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture

Cultivation project Funds for Beijing University of Civil Engineering and Architecture

Project funded by China Railway Construction Group Co., Ltd.

BUCEA Post Graduate Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3