Big Data-Based Performance Analysis of Tunnel Boring Machine Tunneling Using Deep Learning

Author:

Zhang Ye,Chen Jinqiao,Han ShuaiORCID,Li Bin

Abstract

In tunnel boring machine (TBM) construction, the advance rate is a crucial parameter that affects the TBM driving efficiency, project schedule, and construction cost. During the operation process, various types of indicators that are monitored in real-time can help to control the advance rate of TBM. Although some studies have already been carried out in advance rate prediction, the research is almost all based on statistical methods and shallow machine learning algorithms, thereby having difficulties in dealing with a very large amount of monitored data and in modeling the time-dependent characteristics of the parameters. To solve this problem, a deep learning model is proposed based on the CNN architecture, bidirectional Long Short-Term Memory module, and the attention mechanism, which is called the CNN-Bi-LSTM-Attention model. In the first step, the monitored data is processed, and the CNN architecture is adopted to extract features from the data sequence. Then the Bi-LSTM module is adopted to obtain the time-dependent indicators. The significant features can be addressed by the added attention mechanism. In the model training process, the rotation speed of the cutter head (N), thrust (F), torque (T), penetration rate (P), and chamber earth pressure (Soil_P) are adopted to predict the advance rate. The influence of the training periods on the model performance is also discussed. The result shows that not only the data amount, but also the data periods have an influence on the prediction. The long-term data may lead to a failure of the advance rate of TBM. The model evaluation result on the test data shows that the proposed model cannot predict the monitored data in the starting stage, which denotes that the working state of TBM in the starting stage is not stable. Especially when the TBM starts to work, the prediction error is big. The proposed model is also compared with several traditional machine methods, and the result shows the excellent performance of the proposed model.

Funder

National Natural Science Foundation of China

PhD Research Startup Foundation of Xi'an University of Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3