A Study on the Optimization of Atrium Daylight and Energy Performance through Skylight and Shading Design in Commercial Buildings in Cold Zones

Author:

Xue Yibing,Liu Wenhan

Abstract

Atriums play an irreplaceable role within the plan of modern commercial buildings. However, the presence of skylights makes the atrium suffer from unfavorable conditions such as overheating, high energy consumption, and glare, which can be partially reduced by the sun-shading design of skylights. In this paper, we conducted a field test and questionnaire survey on the daylight quality of commercial buildings in cold zones in China to find out the current problems of daylight quality in atriums and to establish a model of commercial atrium. After the dynamic daylight and energy consumption simulation, the sensitivity analysis of daylight and energy performance is performed for the skylight and shading (SAS) design parameters under three shading types. Finally, the Pareto front solution set of optimized commercial atrium daylight, visual comfort, and energy performance for the three shading types has been obtained using a multi-objective search tool. The results show that SRR has the greatest effect on sDA, DGP, and EUI in all shading cases; while SGT has a greater effect on EUI than on daylight quality; FC has a greater effect on EUI than FV on EUI; and LS and LI have a more significant influence on daylight and visual comfort. The optimal SAS values of no shading, fabric shading and louvered shading were screened as SRR is 0.4–0.5, SGT is Double silver Low-E insulating glass; SRR is 0.5–0.6, SGT is Double silver Low-E insulating glass, FV is 0.5–0.7, FC is 0.5–0.6; SRR is 0.6–0.7, SGT is Double silver Low-E insulating glass, LS is 100 mm/125 mm, and LI is 60–70°. It is expected that this study will provide some information and reference for the design of commercial atriums in cold zones in the future.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3