Design Calculation for Concrete-Filled Steel Tube under Soft Lateral Impact

Author:

Kang XiangjieORCID,Liu Yanhui,Zhao Shichun

Abstract

In recent decades, the rapid development of transportation construction has increased the possibility of concrete-filled steel tubes (CFSTs) subjected to soft lateral impact. Some kinds of deviation may still exist between the soft impact process and its design prediction due to frequent safety accidents. To improve the prediction accuracy, this paper contrasted the current soft impact design with the experimental impact processes of CFSTs. The current design is represented by the method and route in Eurocode-1 Actions on structures, which belongs to the one-step type. Extra parameters were added to the one-step method to describe the inertia effect of CFST. According to the experiments and predictions, the soft impact process contains two stages, which are the initial peak stage (IPS) and the stable stage (SS). The current one-step method is consistent with SS but incorrect in IPS and its accuracy is related to the proportion of IPS and SS. An empirical formula, based on the weight of IPS, is summarized to evaluate the overall error of the one-step method in the soft impact design of CFST. This error is due to the unreasonable assumption of the inertial effect in IPS. For the demands of an accurate design in IPS, a new technical route is proposed, consisting of two steps: qualitative analysis and two-stage calculation. The qualitative analysis achieved an approximate quantitative division of IPS and SS, and provided the design loads for the two-stage calculation. The two-stage calculation supplemented the prediction of the inertia effect in IPS and independently estimated the resistances and responses of CFST in the two stages. The above qualitative analysis and two-stage calculation constituted the two-step method and its accuracy and applicability are generally better than that of the one-step design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3