Abstract
Raytracing is a widespread tool for room acoustic simulations, and one of its main advantages is the inclusion of surface scattering. Although surface scattering has been acknowledged as a central aspect of accurate raytracing simulations for many years, there is ongoing research into its effects and how to implement it better. This study evaluates three different algorithms for surface scattering in raytracers, referred to as on–off scattering, perturbation scattering, and diffuse field scattering. Their theoretical foundation is discussed, and the physical accuracy of the resulting simulations is evaluated by comparing simulated room acoustic parameters to measurements. It is found that the choice of surface scattering algorithm has a significant impact on the simulation outcomes, both in terms of physical accuracy and in terms of usability. Additionally, there are differences in the parametrization of surface scattering depending on the algorithm chosen. Of the three tested algorithms, the most commonly used algorithm (on–off scattering) seems to have the best properties for simulations.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献