Experimental Study on Using Synthetic Images as a Portion of Training Dataset for Object Recognition in Construction Site

Author:

Kim Jaemin1ORCID,Wang Ingook1,Yu Jungho1

Affiliation:

1. Department of Architecture Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

Abstract

The application of Artificial Intelligence (AI) across various industries necessitates the acquisition of relevant environmental data and the implementation of AI recognition learning based on this data. However, the data available in real-world environments are limited and difficult to obtain. Construction sites represent dynamic and hazardous environments with a significant workforce, making data acquisition challenging and labor-intensive. To address these issues, this experimental study explored the potential of generating synthetic data to overcome the challenges of obtaining data from hazardous construction sites. Additionally, this research investigated the feasibility of hybrid dataset in securing construction-site data by creating synthetic data for scaffolding, which has a high incidence of falls but low object recognition rates due to its linear object characteristics. We generated a dataset by superimposing scaffolding objects, from which the backgrounds were removed, onto various construction site background images. Using this dataset, we produced a hybrid dataset to assess the feasibility of synthetic data for construction sites and to evaluate improvements in object recognition performance. By finding the optimal composition ratio with real data and conducting model training, the highest accuracy was achieved at an 8:2 ratio, with a construction object recognition accuracy of 0.886. Therefore, this study aims to reduce the risk and labor associated with direct data collection at construction sites through a hybrid dataset, achieving data generation at a low cost and high efficiency. By generating synthetic data to find the optimal ratio and constructing a hybrid dataset, this research demonstrates the potential to address the problems of data scarcity and data quality on construction sites. The improvement in recognition accuracy of the construction safety management system is anticipated, suggesting that the creation of synthetic data for constructing a hybrid dataset can reduce construction safety-accident issues.

Funder

-

Publisher

MDPI AG

Reference20 articles.

1. Typical advances of artificial intelligence in civil engineering;Xu;Adv. Struct. Eng.,2022

2. A study on the meaningful characteristic variables of the image for estimating the depth of concrete cracks;Jung;Korea Facil. Manag. Assoc.,2021

3. Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks;Yang;J. Korea Inst. Mil. Sci. Technol.,2019

4. Quantifying the Effectiveness of IoT Technologies for Accident Prevention;Yeo;J. Manag. Eng.,2020

5. Xiao, K., Engstrom, L., Ilyas, A., and Madry, A. (2020). Noise or Signal: The Role of image Backgrounds in Object Recognition. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3