Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors

Author:

Ran Wuping1,Qiu Hengzheng2,Ai Xianchen1,Zhang Shanshan3,Wang Yaqiang2

Affiliation:

1. School of Traffic and Transportation Engineering, Xinjiang University, Urumqi 830017, China

2. Xinjiang Civil Engineering Technology Research Center, Xinjiang University, Urumqi 830047, China

3. College of Hydraulic and Architectural Engineering, Tarim University, Aral 843300, China

Abstract

After long-term service, the ground will experience settlement and the stability of the roadbed will be lost. In order to effectively reinforce the roadbed, an asphalt roadbed grouting mixture has been applied to the filling of the roadbed. The rotary compaction method was used to prepare different gradation types of lime composite-modified oil sludge pyrolysis residue asphalt, mixtures Sup13, Sup19, and Sup25. This article takes the dynamic modulus of an asphalt roadbed grouting mixture as the mechanical index, and the uniaxial compression dynamic modulus test is carried out on three kinds of rotary compaction asphalt mixtures, Sup13, Sup19, and Sup25. The dynamic modulus master curves of different gradation composite-modified oil sludge pyrolysis residue asphalt mixtures are fitted to study the dynamic modulus of asphalt mixtures under different nominal maximum particle sizes, loading frequencies, and temperatures. The results show that (1) The dynamic modulus of different gradation composite-modified oil sludge pyrolysis residue asphalt mixtures increases with the decrease in temperature and the increase in frequency; (2) when other conditions are the same, the compound-modified asphalt mixture’s dynamic modulus decreases significantly under low-frequency and high-temperature conditions; (3) in the range of 4.4–37.8 °C and medium loading frequency, the dynamic modulus of the compound-modified asphalt mixture is more affected by temperature and loading frequency; (4) in the low-temperature and high-frequency range, the compound-modified asphalt mixture with a larger nominal maximum particle size has a higher dynamic modulus, and the asphalt mixture with better stability of skeleton structure has a higher dynamic modulus. The research results of this article will provide scientific guidance for the study of the mechanical properties of asphalt roadbed grouting mixtures.

Funder

Natural Science Foundation of Xinjiang Autonomous Region

Technology research and development project of Xinjiang Communications Investment (Group) Co., Ltd.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3