Parametric Investigation of Self-Centering Prestressed Concrete Frame Structures with Variable Friction Dampers

Author:

Huang Linjie1ORCID,Qian Zhendong1,Meng Yuan1,Jiang Kaixi1,Zhang Jingru1,Sang Chenxu1

Affiliation:

1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

To enhance the structural stiffness and energy-dissipating capacity after the decompression of beam-to-column connections for self-centering prestressed concrete (SCPC) frames, this study presents the seismic performance of a new type of SCPC frame with variable friction dampers (VFDs). The structure is characterized by a third stiffness and a variable energy-dissipating capacity. A 5-story and an 8-story VFD-SCPC frame were selected as the analytical cases, and their numerical models were built based on OpenSees 3.3.0 finite-element software. Sixteen ground-motion records were selected as excitations for the analyses, and the influence of the second stiffness and the third stiffness for the VFD-SCPC connections, as well as the second activation for VFD, on the seismic performance of the structures, was studied. The results showed that increasing the stiffness (number) of prestressed strands and their distance to the center of the beam section can obviously increase the second stiffness of the structures, thus decreasing their displacement, while the distribution mode of inter-story drift along the building’s height cannot be changed. Increasing the third stiffness of the connections (the angle of slope sliding parts and the stiffness for the combination of disc springs) can effectively reduce the deformation of the structures under MCE (maximum-considered earthquakes) seismic levels and improve the energy-dissipation capacity of structures significantly. The premature secondary activation of VFD can enhance the loading capacity and energy-dissipation capacity of structures under both DBE (design-basis earthquakes) and MCE seismic levels, and reduce the inter-story drift of structures effectively.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Doctor of Entrepreneurship and Innovation in Jiangsu Province

Nanjing Forestry University Undergraduate Innovation Training Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3