Evaluating the Performance of a Combined Vertical Wall–Horizontal Roof Solar Chimney for the Natural Ventilation of Buildings

Author:

Nguyen Y Quoc123,Huynh Trieu Nhat2

Affiliation:

1. Computational Engineering and Design Research Group, School of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam

2. Faculty of Mechanical-Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam

3. Faculty of Engineering and Technology, Binh Duong Economics and Technology University, Binh Duong 75211, Vietnam

Abstract

The natural ventilation of buildings can be achieved effectively with solar chimneys, which are classified into wall, roof, and combined wall–roof configurations. Among the combined systems investigated in the literature, vertical wall–horizontal roof solar chimneys have not been evaluated thoroughly. This study investigates the performance of a combined vertical wall–horizontal roof solar chimney numerically. A two-dimensional Computational Fluid Dynamics (CFD) model is employed to examine the flow and thermal characteristics under various influencing factors relating to the chimney’s geometry, the flow resistance caused by the bend connecting the vertical and horizontal portions, the reverse flow at the outlet, and the location of the heat source. Compared to a vertical wall chimney at the same cavity height, the combined system always had a lower flow rate but had a higher thermal efficiency at some length-to-total-height ratios. Heating the upper walls induced higher flow rates but lower thermal efficiency. Particularly, the effect of the bend on the flow rate was more important than that of the reverse flow at the outlet. These results imply that a combined chimney is preferred over a vertical one for heating applications, wherein the combined chimney should have transparent upper walls.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3