A Prior-Guided Dual Branch Multi-Feature Fusion Network for Building Segmentation in Remote Sensing Images

Author:

Wu Yingbin12ORCID,Zhao Peng1,Wang Fubo1,Zhou Mingquan13,Geng Shengling13,Zhang Dan13

Affiliation:

1. School of Computer Science, Qinghai Normal University, Xining 810016, China

2. School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China

3. State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810016, China

Abstract

The domain of remote sensing image processing has witnessed remarkable advancements in recent years, with deep convolutional neural networks (CNNs) establishing themselves as a prominent approach for building segmentation. Despite the progress, traditional CNNs, which rely on convolution and pooling for feature extraction during the encoding phase, often fail to precisely delineate global pixel interactions, potentially leading to the loss of vital semantic details. Moreover, conventional CNN-based segmentation models frequently neglect the nuanced semantic differences between shallow and deep features during the decoding phase, which can result in subpar feature integration through rudimentary addition or concatenation techniques. Additionally, the unique boundary characteristics of buildings in remote sensing images, which offer a rich vein of prior information, have not been fully harnessed by traditional CNNs. This paper introduces an innovative approach to building segmentation in remote sensing images through a prior-guided dual branch multi-feature fusion network (PDBMFN). The network is composed of a prior-guided branch network (PBN) in the encoding process, a parallel dilated convolution module (PDCM) designed to incorporate prior information, and a multi-feature aggregation module (MAM) in the decoding process. The PBN leverages prior region and edge information derived from superpixels and edge maps to enhance edge detection accuracy during the encoding phase. The PDCM integrates features from both branches and applies dilated convolution across various scales to expand the receptive field and capture a more comprehensive semantic context. During the decoding phase, the MAM utilizes deep semantic information to direct the fusion of features, thereby optimizing segmentation efficacy. Through a sequence of aggregations, the MAM gradually merges deep and shallow semantic information, culminating in a more enriched and holistic feature representation. Extensive experiments are conducted across diverse datasets, such as WHU, Inria Aerial, and Massachusetts, revealing that PDBMFN outperforms other sophisticated methods in terms of segmentation accuracy. In the key segmentation metrics, including mIoU, precision, recall, and F1 score, PDBMFN shows a marked superiority over contemporary techniques. The ablation studies further substantiate the performance improvements conferred by the PBN’s prior information guidance and the efficacy of the PDCM and MAM modules.

Funder

National Natural Science Foundation of China

Qinghai Provincial Natural Science Foundation of China

Natural Science Youth Foundation of Qinghai Province

2022 Annual Technological Innovation Project of Higher Education Institutions in Shanxi Province

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3