Numerical Test and Strength Prediction of Concrete Failure Process Based on RVM Algorithm

Author:

Xia ChunyangORCID,Guo Xuedong,Dai WentingORCID

Abstract

Recycled aggregate concrete (RAC) based on the machine learning (ML) method predicts the nonlinear uncertainty relationship between various mixing ratios and strength. Uniaxial compressive strength is one of the important indices to evaluate its performance. Machine learning is one of the essential methods for solving this nonlinear uncertainty relationship. To realize the selection of concrete raw materials and the learning and application of other influencing factors and provide guidance for engineering construction and application, this paper establishes a database of concrete uniaxial compressive strength based on Abaqus simulation software. The simulation results are highly consistent with the actual values. Based on the simulation database, with different water-cement ratios, different curing days, and recycled aggregate replacement rates as the input data set, the uniaxial compressive strength of concrete is the output data set. The data set is divided into a training set and a test set. A prediction model of the uniaxial compressive strength of concrete based on a relevance vector machine (RVM) algorithm is established. The results show that the maximum error between the simulated and experimental uniaxial compressive strength values is only 0.2 MPa. The correlation coefficient R between the predicted and simulated values of the concrete uniaxial compressive strength prediction model based on the RVM algorithm is 0.975. The model can effectively predict the compressive strength of RAC to meet the engineering requirements.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference35 articles.

1. Experimental study on residual compressive strength of recycled aggregate concrete under fatigue loading;You;Front. Mater.,2022

2. Advanced Probabilistic Neural Network for the Prediction of Concrete Strength;Kim;Icces,2007

3. Application of GA-BP neural network optimized by Grey Verhulst model around settlement prediction of foundation pit;Liu;Geofluids,2021

4. Application of support vector regression for the prediction of concrete strength;Lee;Comput. Concr.,2007

5. Al-Attar, T. (2001). Development of Mathematical Models for Prediction of Structural Concrete Strength. [Ph.D. Thesis, College of Engineering].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3