Building Energy Models at Different Time Scales Based on Multi-Output Machine Learning

Author:

Li Guangchen,Tian WeiORCID,Zhang Hu,Chen Bo

Abstract

Machine learning techniques are widely applied in the field of building energy analysis to provide accurate energy models. The majority of previous studies, however, apply single-output machine learning algorithms to predict building energy use. Single-output models are unable to concurrently predict different time scales or various types of energy use. Therefore, this paper investigates the performance of multi-output energy models at three time scales (daily, monthly, and annual) using the Bayesian adaptive spline surface (BASS) and deep neural network (DNN) algorithms. The results indicate that the multi-output models based on the BASS approach combined with the principal component analysis can simultaneously predict accurate energy use at three time scales. The energy predictions also have the same or similar correlation structure as the energy data from the engineering-based EnergyPlus models. Moreover, the results from the multi-time scale BASS models have consistent accumulative features, which means energy use at a larger time scale equals the summation of energy use at a smaller time scale. The multi-output models at various time scales for building energy prediction developed in this research can be used in uncertainty analysis, sensitivity analysis, and calibration of building energy models.

Funder

National Natural Science Foundation of China

Key Projects of Philosophy and Social Sciences Research, Ministry of Education of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference36 articles.

1. UN Environment Programme (UNEP) (2021). 2021 Global Status Report for Buildings and Construction, UNEP.

2. Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence;Zhang;Energy,2023

3. Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures;Almhafdy;J. Build. Eng.,2022

4. Revisiting the building energy consumption in China: Insights from a large-scale national survey;Guo;Energy Sustain. Dev.,2022

5. A sustainable data-driven energy consumption assessment model for building infrastructures in resource constraint environment;Mohapatra;Sustain. Energy Technol. Assess.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3