Potential Design of Seismic Vulnerable Buildings Incorporating Lead Rubber Bearing

Author:

Al-Kutti Walid,Islam A.

Abstract

The seismic hazard of vulnerable regions warrants the investigation of new technologies, such as base level isolation by lead rubber bearing (LRB) devices, that can help to mitigate structural damage on seismic prone buildings. The behavior adopting such technologies can be dynamically observed in simulated environments and thus serves as a valuable metric for their feasibility. LRB base isolators were incorporated into the design of 16 model buildings to better understand how they affected a building’s seismic response while also providing information on the structural parameters. A total of 12 different types of bearing systems were tested in base isolated (BI) buildings against conventional fixed-base (FB) isolated buildings. The system of each model high-rise building was represented by the finite element package. Static as well as dynamic analysis were conducted using response spectrum analysis (RSA) based on the seismic excitation to determine the influence of the model type in the aseismic design and the alteration in superstructure behavior. The study reveals that the LRB isolators can potentially diminish respective story accelerations, story inertia, and base shear. Use of LRB isolators in BI buildings resulted in a 10–20% reduction in base shear compared to FB buildings. A notable lateral shift of superstructure is offered by LRB-induced flexibility. The reduction of story acceleration for response spectrum varies 30% on lower stories up to 70% on upper stories. The LRB systems with higher characteristic strength and relatively less isolation periods shows better productivity to minimize displacements in the bearing face for dropping structural shift. However, the LRB with comparatively lower characteristic strength and high isolation periods shows the most efficiency in controlling base shear, offering least story accelerations and consenting lower story inertia forces.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3