Analysis of Electricity and Water Consumption in Existing Mosque Buildings in the UAE

Author:

AlAli Mariam1ORCID,Mattar Yara1,Alzaim Mhd Amer1,Beheiry Salwa2ORCID

Affiliation:

1. Engineering Systems Management, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

2. Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

According to the World Economic Forum, the building sector is responsible for 40% of global energy consumption and 33% of greenhouse gas (GHG) emissions, and this is expected to increase due to population growth and the subsequent impact on the environment, economy and health. To tackle the problem, countries have set new construction codes, policies and regulations for the construction of new buildings in an effort to make them greener. However, there is a need to enhance the status of the existing buildings, especially mosques, as they are the main contributors to energy usage and water consumption in the United Arab Emirates (UAE). Therefore, this research seeks to fill this gap, aiming to evaluate the energy usage and water consumption practices employed in the existing mosque buildings within the UAE and to provide recommendations for improving the sustainability of mosques, with a focus on the environmental and economic pillars. The methodology relies mainly on data collected from 146 existing mosque buildings that have undergone energy saving audits across the UAE. Descriptive statistical analysis is performed to analyze the data from the period of 2018–2019 in order to determine the most significant factors related to energy inefficiency in existing mosque buildings in the UAE and to determine the most cost-effective and energy-saving corrective measures for energy and water conservation. The findings further enhance the standard of experience for mosque visitors (social aspect); reduce energy bill expenses, providing an acceptable return on investment from the proposed energy conservation measures for stakeholders (economic); and reduce the overall energy consumption, which can reduce the total CO2 emissions from mosque buildings (environmental).

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3