Modeling and Optimizing the Effect of Palm Oil Fuel Ash on the Properties of Engineered Cementitious Composite

Author:

Hong Wong Chi1,Mohammed Bashar S.1ORCID,Abdulkadir Isyaka12ORCID,Liew M. S.1

Affiliation:

1. Civil and Environmental Engineering Department, Faculty of Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia

2. Civil Engineering Department, Bayero University, Kano 700241, Nigeria

Abstract

Supplementary cementitious materials (SCMs) are strongly advised as an alternative to cement to reduce its adverse environmental effects. One such SCMs is palm oil fuel ash (POFA), a waste material generated in large quantities in Southeast Asian countries, and there is insufficient data on its use in engineered cementitious composite (ECC). This study aims to optimize the properties of ECC using POFA as a cement replacement, by using 13 mixes developed by response surface methodology (RSM) with the POFA (at 20, 30, and 40% cement replacement levels) and PVA fiber (at 1, 1.5, and 2% volume fractions) as the input factors. The compressive, tensile, and flexural strengths, and tensile capacity (CS, TS, FS, and TC) were assessed. The microstructural properties were determined using Field-Emission Scanning Electron Microscopy (FESEM) and Mercury Intrusion Porosimetry (MIP). Results indicated that while the ductility and strain capacity increased with POFA, the strengths decreased by up to 51.5%. However, a structural POFA-ECC could be made with up to 30% POFA and 1–5% PVA fiber. The RSM optimization revealed 27.68% POFA and 2% PVA fiber as the optimal levels of the input factors, with the experimental validation correlating with the predicted values at less than 10% error.

Funder

University Teknologi PETRONAS Malaysia under the Yayasan UTP

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3