Green Roofs and Greenpass

Author:

Scharf ,Kraus

Abstract

The United Nations have identified climate change as the greatest threat to human life. As current research shows, urban areas are more vulnerable to climate change than rural areas. Numerous people are affected by climate change in their daily life, health and well-being. The need to react is undisputed and has led to numerous guidelines and directives for urban climate adaptation. Plants are commonly mentioned and recommended as one key to urban climate adaptation. Due to shading of open space and building surfaces, as well as evapotranspiration, plants reduce the energy load on the urban fabric and increase thermal comfort and climate resilience amongst many other ecosystem services. Plants, therefore, are described as green infrastructure (GI), because of the beneficial effects they provide. Extensive green roofs are often discussed regarding their impact on thermal comfort for pedestrians and physical properties of buildings. By means of Stadslab2050 project Elief Playhouse in Antwerp, Belgium, a single-story building in the courtyard of a perimeter block, the effects of different extensive green roof designs (A and B) on the microclimate, human comfort at ground and roof level, as well as building physics are analyzed and compared to the actual roofing (bitumen membrane) as the Status Quo variant. For the analyses and evaluation of the different designs the innovative Green Performance Assessment System (GREENPASS®) method has been chosen. The planning tool combines spatial and volumetric analyses with complex 3D microclimate simulations to calculate key performance indicators such as thermal comfort score, thermal storage score, thermal load score, run-off and carbon sequestration. Complementary maps and graphs are compiled. Overall, the chosen method allows to understand, compare and optimize project designs and performance. The results for the Elief Playhouse show that the implementation of green roofs serves a slight contribution to the urban energy balance but a huge impact on the building and humans. Variant B with entire greening performs better in all considered indicators, than the less greened design Variant A and the actual Status Quo. Variant B will probably bring a greater cost/benefit than Variant A and is thus recommended.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference56 articles.

1. Transforming Our World: The 2030 Agenda for Sustainable Development,2015

2. Global Warming of 1.5 °C,2018

3. Adaptation needs and options;Noble,2014

4. Urban areas;Revi,2014

5. Understanding Climate Change from a Global Analysis of City Analogues;Bastin,2019

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3