Tensile-to-Shear Crack Transition in the Compression Failure of Steel-Fibre-Reinforced Concrete: Insights from Acoustic Emission Monitoring

Author:

Jiang Zihan1ORCID,Zhu Zhiwen1,Accornero Federico1ORCID

Affiliation:

1. Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, China

Abstract

Steel-fibre-reinforced concrete (SFRC) has been increasingly used in the field of engineering structures in recent years. Hence, the accurate monitoring of the fracturing process of in-service SFRC has considerable significance in terms of structural safety. This paper investigates the acoustic emission (AE) and digital image correlation (DIC) features characterising the damage behaviour of SFRC samples in compression. For all the tests, cumulated AE, b-value, βt coefficient, average frequency, and rise angle are considered to describe the actual SFRC failure mechanisms. The results show that SFRC exhibits enhanced toughness compared to normal concrete (NC), with an indicated transition from a brittle to a ductile structural behaviour. This improved behaviour can be attributed to the bridging effect of steel fibres, which also drives the progressive tensile-to-shear crack transition, thus being the main cause of the final SFRC failure. As the loading rate increases, there is a corresponding increase in the number of shear cracks, leading to a decrease in the overall ductility and toughness of SFRC. Moreover, since the number of shear cracks notably increases right before SFRC fracture, this can serve as a safety warning of the impending failure. Furthermore, the cumulated AE curve displays a strong discontinuity in the occurrence of an unstable fracturing process in SFRC, which can also be forecasted by the AE time-scaling coefficient βt. The AE and DIC features can be used as failure precursors in the field of structural surveying, offering an accurate technical support for engineering failure warnings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

STU Outstanding Talent Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3