Carbon Emissions of Assembly Buildings Constrained by Flexible Resource: A Study on Cost Optimization

Author:

Guo Feng,Zhang Yuzhuo,Chang Chunguang,Yu YangORCID

Abstract

The construction industry is a high-energy-consumption industry. Nearly 40% of global carbon emissions derive from the construction industry. Prefabricated assembly technology is an effective means of carbon emission reduction, but the incremental cost of prefabricated components is much more expensive than that of cast-in-place components. It is not conducive for enterprises to choose prefabricated assembly technology to decrease emissions. Most of the current studies focus on the carbon-reduction effect of prefabricated assembled buildings, and there are fewer studies related to the impact of cost factors on enterprises’ participation in building carbon reduction. The cost factor will affect the choice of prefabricated assembly technology to reduce carbon emissions. Therefore, it is necessary to analyze the relationship between carbon emissions and costs in prefabricated buildings. Aiming at this problem, this paper proposes a dual-objective method to optimize cost and carbon emissions by using the improved optimization algorithm to solve the problem. Through the analysis of actual cases, the results show that when the prefabrication rate is 35–40%, enterprises can obtain a better carbon-emission-reduction effect by appropriately increasing the cost. When the prefabrication rate is higher than 40%, the carbon-reduction effect that can be obtained by greatly increasing the cost is limited. Therefore, when enterprises decide a prefabrication range of 35–40%, they are able to obtain the maximum carbon-reduction effect with the minimum cost. This study can provide a reference for the government to formulate relevant policies with energy conservation and emission reductions in prefabricated buildings and also can provide a reference for enterprises to make decisions between carbon emission reduction and cost.

Funder

National Natural Science Foundation of China

Liaoning Basic Research Project, China

Liaoning Provincial Colleges and Universities’ Innovative Talents Support Plan

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3