The Interfacial Friction Loss of Prestressed Carbon-Fiber Tendons in a Bending State

Author:

Fu JiapingORCID,Zeng Tian,Wang Bing,Zhuge Ping,Xia Jiajun,Cai Wanyun

Abstract

Carbon-fiber reinforced plastic (CFRP) is ideal for bridge reinforcement due to its high strength, light weight, and corrosion resistance. Studies on the friction loss of CFRP tendons in a bending state form an important part of advancing the application of CFRP materials to external prestressing strengthening technology. To understand the magnitude and variation of interfacial friction loss of prestressed CFRP tendons under bending conditions, 12 single-bending prestressing tension tests and 4 three-consecutive-bending prestressing tension tests were conducted in this study. Two bending radii of 1.5 m and 2 m, two bending angles of 20° and 30°, and three contact surfaces with different friction coefficients were selected for the steering block condition to measure the friction loss under each stage of tensioning prestress. On this basis, a model for calculating the friction loss rate on the surface of prestressed CFRP tendons was derived for the change of contact stress between CFRP tendons and deflectors during the installation and tensioning stages. The results show that the friction loss of external prestressed CFRP tendons is mainly related to four external factors: bending radius, steering angle, friction coefficient, and the magnitude of tensioning prestress; with the increase of prestress, the friction loss rate goes through three stages, the rising stage, the falling stage, and the stable stage; in the process of friction loss rate change, the main influencing factor controlling the magnitude of friction loss rate changes from bending radius to steering angle. In the theoretical calculation model of friction loss rate, the calculation model of the prestressed CFRP tendons under multiple successive bends can be simplified to a combination of several calculation models for a single bend. This study provides a reference for the engineering field of strengthening reinforced concrete (RC) beams using external prestressed CFRP tendons.

Funder

National Natural Science Foundation of China

Zhejiang province public welfare projects

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3