Affiliation:
1. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
2. Department of Structural Engineering, CSIR-Central Building Research Institute, Roorkee 247667, India
3. Department of Building Engineering, Energy Systems and Sustainability Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
4. Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India
Abstract
The degradation of reinforced concrete (RC) structures has raised major concerns in the concrete industry. The demolition of existing structures has shown to be an unsustainable solution and leads to many financial concerns. Alternatively, the strengthening sector has put forward many sustainable solutions, such as the retrofitting and rehabilitation of existing structural elements with fiber-reinforced polymer (FRP) composites. Over the past four decades, FRP retrofits have attracted major attention from the scientific community, thanks to their numerous advantages such as having less weight, being non-corrodible, etc., that help enhance the axial, flexural, and shear capacities of RC members. This study focuses on predicting the compressive strength (CS) of FRP-confined concrete cylinders using analytical models and machine learning (ML) models. To achieve this, a total of 1151 specimens of cylinders have been amassed from comprehensive literature studies. The ML models utilized in the study are Gaussian process regression (GPR), support vector machine (SVM), artificial neural network (ANN), optimized SVM, and optimized GPR models. The input parameters that have been used for prediction include the geometrical characteristics of specimens, the mechanical properties of FRP composite, and the CS of concrete. The results of the five ML models are compared with nineteen analytical models. The results evaluated from the ML algorithms imply that the optimized GPR model has been found to be the best among all other models, demonstrating a higher correlation coefficient, root mean square error, mean absolute percentage error, mean absolute error, a-20 index, and Nash–Sutcliffe efficiency values of 0.9960, 3.88 MPa, 3.11%, 2.17 MPa, 0.9895, and 0.9921, respectively. The R-value of the optimized GPR model is 0.37%, 0.03%, 5.14%, and 2.31% higher than that of the ANN, GPR, SVM, and optimized SVM models, respectively, whereas the root mean square error value of the ANN, GPR, SVM, and optimized SVM models is, respectively, 81.04%, 12.5%, 471.77%, and 281.45% greater than that of the optimized GPR model.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献