Numerical and Analytical Investigations of the Impact Resistance of Partially Precast Concrete Beams Strengthened with Bonded Steel Plates

Author:

Yan Xueyuan1,Lin Cihang1,Liu Xuhong2ORCID,Zheng Tianxiao1,Shi Shen1,Mao Huimin3

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China

2. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou 350118, China

3. School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China

Abstract

A building may be subjected to a variety of accidental loads during its service life. Partially precast concrete (PC) beams are a primary structural component. Their impact resistance can have a substantial impact on the overall safety of a structure when it is subjected to an impact load. In this study, numerical analyses were performed on the dynamic response of PC beams strengthened with bonded steel plates subjected to impact loading. The model was verified from four aspects: energy conversion, failure form, impact force–time history curve, and midspan displacement–time history curve. The dynamic response eigenvalues of the peak impact force, peak midspan displacement, and residual midspan displacement were compared between the numerical simulations and experimental tests. The relative inaccuracy of the peak impact force ranged from 9.51% to 14.0%, with an average value of 11.9%. The average relative error for the midspan displacement was −0.09%, with the greatest relative errors varying between −0.64% and 0.3%. The residual value errors of the midspan displacement ranged from −0.95% to 2.38%, with an average relative error of 0.94%. On this basis, the effects of the impact mass, impact height, width, and length of the bonded steel plate on the impact resistance of the components were evaluated. Furthermore, the differences in the equivalent plastic strain contours, impact force–time history curves, and midspan displacement–time history curves under different parameters were compared. The results demonstrated that the failure modes and flexural deformations of the test beams were influenced by the impact mass and impact height. The increase in the length and width of the steel plate had no effect on the impact force response, but the peak and residual values of the midspan displacement decreased, which could significantly increase the impact resistance of the beams. Lastly, the impact mass m, the impact height h, the thickness t of the bonded steel plate, the length of the bonded steel plate hs, and the width of the bonded steel plate bs were all taken into account in the fitting formula. These five parameters were used to predict the peak impact force response, the peak value of the midspan displacement, and the residual value of the midspan displacement. The results demonstrated that the fitting formula had small errors and could accurately reflect the dynamic responses of the PC beams strengthened with bonded steel plates under impact loading.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Fujian

Science and Technology Planning Project of Fuzhou

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3