Energy-Efficient Solutions Depending on Building Forms Design with Tilted South and North Facades

Author:

Freewan Ahmed A. Y.

Abstract

Interactions between buildings and outdoor environment variables, such as the sun, wind and precipitation, depend on building parameters such as orientation, colours, materials and forms. Building forms are one of the most important parameters that directly impact the cooling and heating load energy consumption, daylight environment and urban sustainability. The current study focused on how building forms affect the energy performance of buildings. Inclined forms that were shaped based on the inclination of south and north facades were studied. Many methods were used to explore the impacts of several variables, including exposure to direct sunrays and heating and cooling load. Thermal performance and energy consumption were investigated for many inward- and outward-tilted angles forms for both the south and north directions and compared to vertical facades. In addition, the study developed new building forms based on a combination of south and north tilted forms, which have low energy consumption. The configurations achieved an acceptable balance between cooling and heating energy consumption. A series of computer simulations were developed using energy plus a calculation engine within DesignBuilder, SunCast, Radiance and IES VE. The results showed that outward-tilted facades for the south orientation perform well, as they reduced the cooling load due to self-shading. Building forms that balanced south and north tilted facades saved the most energy. South-tilted facades forming only 30° angles performed the best, with average energy savings of 20%. Meanwhile, forms with 30° south-tilted facade and 10° tilted north facades, such as forms 3–6, reduced energy consumption by more than 23% compared to the base case.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3