Feature Selection-Based Method for Scaffolding Assembly Quality Inspection Using Point Cloud Data

Author:

Zhao Jie1,Chen Junwei2,Liang Yangze1ORCID,Xu Zhao1ORCID

Affiliation:

1. Department of Civil Engineering, Southeast University, Nanjing 210096, China

2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China

Abstract

The stability of scaffolding structures is crucial for quality management in construction. Currently, scaffolding assembly quality monitoring relies on visual inspections performed by designated on-site personnel, which are highly subjective, inaccurate, and inefficient, hindering the advancement of intelligent construction practices. This study proposes an automated method for scaffolding assembly quality inspection using point cloud data and feature selection algorithms. High-precision point cloud data of the scaffolding are captured by a Trimble X7 3D laser scanner. After registration with the forward design model, a 2D slicing comparison method is developed to measure geometric dimensions with an accuracy controlled within 0.1 mm. The collected data are used to build an SVM model for automated assembly quality inspection. To combat the curse of dimensionality associated with high-dimensional data, an optimized genetic algorithm is employed for the dimensionality reduction in the raw sample data, effectively eliminating data redundancy and significantly enhancing convergence speed and classification accuracy of the detection model. Case studies indicate that the proposed method can reduce feature dimensionality by 70% while simultaneously improving classification accuracy by 13.9%. The proposed method enables high-precision automated inspection of scaffolding assembly quality. By identifying the optimal feature subset, the method differentiates the priority of various structural parameters during inspection, providing insights for optimizing the quality inspection process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3