Research on Street Color Environment Perception Based on CEP-KASS Framework

Author:

Hu Kuntao1ORCID,Xu Ziqi1ORCID,Wang Xiufang1,Wang Yingyu1,Li Haoran1,Zhang Yibing1

Affiliation:

1. School of Architecture and Design, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The color of urban streets plays a crucial role in shaping a city’s image, enhancing street appeal, and optimizing the experience of citizens. Nevertheless, the relationship between street color environment and residents’ perceptions has rarely been deeply discussed, and most of the existing studies adopt qualitative methods. To accurately and effectively assess the connection between street color environment and residents’ emotional perceptions, this paper introduces a quantitative research framework based on multi-source data called “Color Emotion Perception with K-Means, Adversarial Strategy, SegNet, and SVM (CEP-KASS)”. By combining K-Means unsupervised machine learning and SegNet computer vision techniques, it captures and analyzes visual elements and color data from Baidu Street View Images (BSVI). It then employs a human–machine adversarial scoring model to quantify residents’ perceptions of BSVI and uses the support vector machine regression model to predict the final perception scores. Based on these data, a Pearson correlation analysis and visual analysis were conducted on the elements and color in the urban environment. Subsequently, the streets were classified based on perception frequency and perception scores by integrating multi-source data, and areas within the third ring of Xuzhou City were selected for validating the research framework. The results demonstrate that utilizing street-view images and the CEP-KASS framework can quantitatively analyze urban color perception and establish a connection with residents’ emotions. In terms of color perception, red, orange, and blue all have a strong positive correlation with the interesting score, whereas black is positively correlated with a sense of safety. Regarding color attributes, low-saturation bright colors result in higher fun perception scores in urban spaces; too low saturation and brightness can affect their attractiveness to residents; brightness has an inverse relationship with the perception of safety, and adjusting brightness inversely can improve the perceived safety experience in certain urban external spaces. The street classification criteria based on perception frequency and perception scores proposed herein can provide references for planners to prioritize color transformation decisions, with a priority on emulating HSHF streets and transforming LSHF streets. When formulating color planning, suggestions for color adjustment can be given based on the correlation study of color with visual elements and perception scores, optimizing urban residents’ spatial perception and their emotional experiences. These findings provide robust theoretical support for further enhancing the visual quality of streets and refining urban color planning.

Funder

Graduate Innovation Program of China University of Mining and Technology

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference71 articles.

1. Effect of people on placemaking and affective atmospheres in city streets;Abusaada;Ain Shams Eng. J.,2021

2. Liu, W. (2019). Research on the Perceptual Quality of UrbanStreet Space Based on Baidu Street Views. [Master’s Thesis, Wuhan University].

3. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews;Bosch;J. Transp. Health,2017

4. Measuring the Built Environment for Physical Activity;Brownson;Am. J. Prev. Med.,2009

5. Street appeal: The value of street improvements;Carmona;Prog. Plan.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3