The Effect of Volcanic Stone and Metakaolin on the Compressive Properties of Ultrahigh-Performance Concrete Cubes

Author:

Yin Yushi12,Ma Zeyu3

Affiliation:

1. College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China

2. Department of Civil Engineering, Tongji University, Shanghai 200092, China

3. School of Architectural and Engineering, Yuncheng Vocational and Technical University, Yuncheng 044000, China

Abstract

Over the past few decades, ultrahigh-performance concrete (UHPC) has been widely studied and applied because of its outstanding mechanical properties, such as its high strength and notable durability. However, because of its high cost and easy shrinkage cracking during early pouring in mass concrete construction, to reduce the cost of UHPC and reduce the cracks caused by early pouring, volcanic stone was used as a new type of UHPC coarse aggregate, while metakaolin (MK) was added to the system at the same time, and then two parameters, namely the volcanic rock particle size group and the MK dispersion ratio, were set. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TG) microanalysis methods were used to reveal the influence of changes in the material microstructure, phase composition, material composition and crystallinity of the mineral composition on the compressive properties of the UHPC cubes. The results show that the mechanical “lock-in effect” of the structure formed by the volcanic rock holes and mortar can effectively improve the shear resistance of the UHPC–volcanic rock interface, and the compressive strength of the UHPC cubes increases with the volcanic stone’s particle size. When the MK dispersion ratio is less than 4%, the cube compressive strength of the UHPC and the contents of CaCO3 crystals, C-S-H gel and travertine in the UHPC increase with an increasing MK dispersion ratio. At an age of 28 days, compared with the addition of 1% MK, the addition of 4% MK increases the production of C-S-H gel and travertine in the UHPC matrix by 24.82%. When the MK dispersion ratio is 4%, the crystallinity values of the C-S-H gel, travertine and limestone in the UHPC are greater. Adding MK at a 4% dispersion ratio can promote the crystallization of limestone into a large amount of calcite, which can increase the strength of UHPC. On the one hand, the addition of volcanic coarse aggregate results in the retention of more free water and bound water; on the other hand, it also makes it difficult to crystallize CaCO3. The combined action of MK at a 4% dispersion ratio and volcanic rock significantly inhibits CaCO3 crystallization.

Funder

National Natural Science Foundation of China

The Basic Science (Natural Science) Research Project of Higher Education Institutions in Jiangsu Province

Publisher

MDPI AG

Reference27 articles.

1. Study on the influence of metakaolin and silica fume on the strength and microstructure of cement concrete;Zhang;Transp. Technol.,2017

2. Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa;Wille;ACI Mater. J.,2011

3. Review of research on ultra high performance concrete;Chen;J. Build. Sci. Eng.,2014

4. Effects of coarser fine aggregate on tensile properties of ultra high performance concrete;Pyo;Cem. Concr. Compos.,2017

5. Optimazation and performance of cost-effective ultra-high performance concrete;Meng;Mater. Struct.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3