Deformation and Strength Characteristics of Marine Soft Soil Treated by Prefabricated Vertical Drain-Assisted Staged Riprap under Seawall Construction

Author:

Wu Xue-Ting1ORCID,Liu Jun-Ning1,Xie Zhi-Min2

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

2. China Railway Eryuan Engineering Group Company Limited, Chengdu 610031, China

Abstract

Prefabricated vertical drains (PVDs) with staged riprap preloading have been widely used in soft soil ground improvement and embankment construction. However, ground treatment effectiveness evaluation is still a difficult problem due to multiple factors. Considering this, in situ monitoring and numerical simulation were conducted to study the deformation and strength characteristics of marine soft soil ground treated by PVD-assisted staged riprap under the Lingni Seawall construction in China. Monitoring and analysis of results showed that use of PVD-assisted staged riprap resulted in a good improvement effect. In particular, in the PVD-treated zone within 10 m in depth, corresponding to a half-length of the PVD, the average radial degree of consolidation reached up to 75–100%, and the soil strength increased significantly by 200–700%. Moreover, numerical simulation showed that the linear 1-dimensional drain element of PVD closely met the engineering accuracy requirements with good consistency with the monitoring data. Compared with a totally solid element model, the numbers of elements and nodes were reduced and the calculating efficiency and model accuracy were increased by using a PVD linear element, which provides a basis for building large complex finite element models.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3