Effects of the Ground Reinforcement on the Dynamic Behaviors of Compacted Loess Embankment with Ballasted Track

Author:

Wei Xinsheng1,Wang Rui1,Hu Zhiping1,Wen Xin1ORCID

Affiliation:

1. School of Civil Engineering, Chang’an University, Xi’an 710061, China

Abstract

An embankment is needed to satisfy the requirements for the longitudinal slope of railway lines, and ground reinforcement is also generally required in loess regions. The present study attempted to understand the effects of different ground reinforcement measures on the dynamic characteristics of a track–embankment–ground system. To this end, the critical speeds and the distributions of dynamic stress and environmental vibration were analyzed using a 2.5D finite element method. Three typical ground reinforcements, including dynamic compaction ground (DCG), soil–cement compacted pile composite ground (SCG) and CFG pile composite ground (CFGG), were used. The results indicate that the train speed (critical speed I) at which the maximum vertical displacement of the track occurs is universally higher than that (critical speed II) at which the wave propagation phenomenon occurs. The lower boundary limit of the peak region in the dispersion relationship can be selected as the reference value of critical speed II. Moreover, the values of critical speed I obtained using the DCG, SCG and CFGG models were around 92, 105 and 127 m/s, respectively. For critical speed II, the values were 75, 80 and 115 m/s. Once the train speed exceeded critical speed II, the vibration was confined to the embankment in the CFGG model, as evidenced by the isolation of the wave propagation from the embankment to the ground as well as the increasing dynamic stress in the embankment. After reinforcement, the dynamic stress, dynamic influence depth (DID), critical speed and resonant frequency increased. Additionally, the DID stayed around the 3–6 m range at all speeds.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3