Positioning Positive Energy Districts in European Cities

Author:

Lindholm OscarORCID,Rehman Hassam urORCID,Reda Francesco

Abstract

There are many concepts for buildings with integrated renewable energy systems that have received increased attention during the last few years. However, these concepts only strive to streamline building-level renewable energy solutions. In order to improve the flexibility of decentralized energy generation, individual buildings and energy systems should be able to interact with each other. The positive energy district (PED) concept highlights the importance of active interaction between energy generation systems, energy consumers and energy storage within a district. This paper strives to inform the public, decision makers and fellow researchers about the aspects that should be accounted for when planning and implementing different types of PEDs in different regions throughout the European Union. The renewable energy environment varies between different EU regions, in terms of the available renewable energy sources, energy storage potential, population, energy consumption behaviour, costs and regulations, which affect the design and operation of PEDs, and hence, no PED is like the other. This paper provides clear definitions for different types of PEDs, a survey of the renewable energy market circumstances in the EU and a detailed analysis of factors that play an essential role in the PED planning process.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3