Advancing the Circular Economy: Reusing Hybrid Bio-Waste-Based Gypsum for Sustainable Building Insulation

Author:

Balti Sameh12,Boudenne Abderrahim3,Belayachi Naima4,Dammak Lasâad5ORCID,Hamdi Noureddine26

Affiliation:

1. National School of Engineers, University of Gabes, Rue Omar Ibn-El Khattab, Gabes 6029, Tunisia

2. Composite Materials and Clay Minerals Laboratory, National Center for Research in Materials Sciences, Technopole Borj Cédria, Soliman 8020, Tunisia

3. Paris Est Creteil, CERTES, 61 Av. du Général de Gaulle, 94010 Créteil, France

4. Univ. Orleans, Univ. Tours, INSA-CVL, LaMé—EA7494, 8 Rue Léonard De Vinci, 45072 Orléans, France

5. Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais, France

6. Higher Institute of Water Sciences and Techniques, University of Gabes, Zrig, Gabes 6072, Tunisia

Abstract

Finding eco-friendly products that are beneficial to the environment and serve as tools for sustainable development is a contemporary challenge. This work illustrates the recovery of bio-waste-based materials, which not only improve the hygrothermal properties of gypsum but also promote the paper and wood recycling processes in a circular economy approach. The samples were subjected to tests for density, water absorption, ultrasonic pulse velocity, flexural strength, compressive strength, and thermophysical property characterization. A statistical analysis of variance was used to study the impact of waste on the physico-mechanical behavior of gypsum, leading to the development of predictive models that can be used to predict and optimize the performance of bio-composites in various applications. The results revealed a reduction in mechanical strength with the addition of waste, but the samples still exhibit superior insulation properties, surpassing commonly used standard boards. By adding ouate and wood wastes to a mass of 20% in its natural state, the gypsum becomes lighter and acts as a better insulator with a reduced density, thermal conductivity, and ultrasound velocity of up to 50%, 57%, and 83%, respectively. These findings show the significant implication of reducing environmental impacts while contributing to the promotion of sustainable building practices, both in new construction projects and in building renovations.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3