Research on Statistical Characteristics and Prediction Methods of Ferronickel Slag Pervious Concrete Performance with Different Sizes of Aggregate and Mixtures

Author:

Tang Zhongping12,Peng Hua2,Yi Shixiang1,Feng Fan3ORCID

Affiliation:

1. Institute of Structural Material Failure and Strengthening Technology, Ningbo Polytechnic, Ningbo 315800, China

2. National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha 410075, China

3. School of Architectural Engineering, Hunan Institute of Engineering, Xiangtan 411100, China

Abstract

In the exploration of sustainable construction materials, the application of ferronickel slag (FNS) in creating pervious concrete has been investigated, considering its potential to meet the dual requirements of mechanical strength and fluid permeability. To elucidate the statistical properties and models for predicting the performance of FNS-composited pervious concrete with different sizes of aggregates and mixtures, a series of experiments, including 54 kinds of mixtures and three kinds of aggregate, were conducted. The focus was on measuring the compressive strength and the permeability coefficient. The results indicate that the compressive strength of pervious concrete decreases with the increase in aggregate size, while the permeability coefficient increases with the increase in aggregate size. Through normalization, the variability of these properties was quantitatively analyzed, revealing coefficients of variation for the concrete’s overall compressive strength and the permeability coefficient at 0.166, 0.132, and 0.150, respectively. Predictive models were developed using machine learning techniques, such as Linear Regression, Support Vector Machines, Regression Trees, and Gaussian Process Regression. These models demonstrated proficiency in forecasting the concrete’s compressive strength and permeability coefficient.

Funder

Social Welfare Research Fund of Ningbo Science and Technology Bureau in 2022

Open Fund of National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China in 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3