Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections

Author:

Alkhattabi Loai1ORCID,Ayash Nehal M.2ORCID,Hassan Mohamed23,Gouda Ahmed2

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia

2. Department of Civil Engineering, Faculty of Engineering, Helwan University (HU), Cairo 11795, Egypt

3. Department of Civil Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

Abstract

This article explores the punching shear behavior of GFRP-RC interior slab–column connections. The parameters tested included the column–aspect ratio (1.0, 2.0, 3.0, 4.0, and 5.0), perimeter-to-depth ratio for square column stubs with side lengths of 0.3, 0.4, 0.5, 0.6, and 0.7 m, and span-to-depth ratios of 4, 6, 8, 10, and 12. A review of the literature revealed that no previous study has investigated the effect of these parameters or their interactions on this type of connection. Numerically, twenty-five slabs were created using finite element (FE) software (V3), each with square dimensions of 2.5 m and a constant thickness of 0.2 m. The central column extended 0.3 m from the top and bottom of the slab. All four sides of the slabs were supported, and the specimens underwent pure static shear load testing. The test results demonstrated that all slabs failed due to punching shear. Increasing any parameter value reduced the punching shear stresses. Additionally, the results indicated that Canadian (CSA-S806-12) and Japanese (JSCE-97) standards for FRP-RC materials generally provided the closest predictions of punching shear capacity compared to the American guideline, ACI 440.1R-22. However, all standards exhibited shortcomings and require enhancement and modifications, particularly to consider the impact of the span-to-depth ratio. Therefore, three equations were developed to predict the shear strength of the connections, yielding better results than those prescribed by the North American and Japanese standards.

Funder

University of Jeddah

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3