Prediction of an Efficient Energy-Consumption Model for Existing Residential Buildings in Lebanon Using an Artificial Neural Network as a Digital Twin in the Era of Climate Change

Author:

El-Gohary Mohamed12,El-Abed Riad1,Omar Osama3ORCID

Affiliation:

1. Faculty of Engineering, Beirut Arab University, Beirut 1107, Lebanon

2. Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria P.O. Box 21544, Egypt

3. Department of Architecture and Interior Design, College of Engineering, University of Bahrain, Manama P.O. Box 32038, Bahrain

Abstract

Environmental factors, such as climate change, have serious consequences for existing buildings, including increased resource consumption and footprint, adverse health effects, and reduced comfort for the occupants. To promote sustainability and address climate change, architecture must embrace digitalization. Buildings can be built digitally, analyzed in real time, optimized for energy consumption, and utilized to reduce carbon emissions and achieve zero energy consumption using digital twin technology. Currently, Lebanon’s residents are turning to solar power to generate renewable energy as a result of a lack of energy supplied by the government. In this study, a digital twin model was designed using an artificial neural network (ANN) to investigate the energy consumption of residential buildings. The main idea was to assist architects and engineers in forecasting energy consumption for different design materials by selecting the most effective alternate design for materials with building envelope characteristics, such as exterior walls, roof insulation, and windows, to minimize the consumption of energy in a residential building, hence resulting in a green building. The data simulations used in the digital twin model were carried out using Quick Energy Simulation Tool (eQuest) software; 1540 simulation results were used for different thicknesses of insulation material, values of conductivity, and window types. The digital twins were designed using an artificial neural network model. The results of the investigation and the accompanying eQuest output results were found to be precise and very similar.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3