Experimental and Numerical Performance Evaluation of Bio-Based and Recycled Thermal Break Strips in LSF Partition Walls

Author:

Santos PauloORCID,Abrantes David,Lopes PauloORCID,Mateus Diogo

Abstract

The thermal performance of Lightweight Steel Framed (LSF) walls could be strongly compromised due to steel’s high thermal conductivity and their related thermal bridges. In this paper, the performance of bio-based (pine wood) and recycled (rubber–cork composite) Thermal Break Strip (TBS) materials, to mitigate the thermal bridge effect originated by steel profiles in LSF partition walls, is evaluated. This assessment was achieved by measurements under controlled laboratory conditions and by predictions using some numerical simulation models. Regarding the measurements, two climatic chambers (cold and hot) were used to impose a nearly constant temperature difference (around 35 °C), between the LSF partition test samples’ surfaces. To measure the overall surface-to-surface thermal resistance (R-value) of the evaluated LSF wall configurations, the Heat Flow Meter (HFM) method was used. Moreover, the measured values were compared with the calculations by 2D (THERM models) and 3D (ANSYS models) numerical simulations, exhibiting an excellent agreement (less than ±2% difference). Three TBS locations and three materials are evaluated, with their thermal performance improvement compared with a reference interior partition LSF wall, having no TBS. The top performance was accomplished by the aerogel super-insulating TBS material. The bio-based material (pine wood) and the recycled rubber–cork composite present quite similar results, with a slight advantage for the pine wood TBSs, given their higher thickness. Considering the TBS location, the inner and outer side present comparable performances. When using TBSs on both sides of steel profile flanges, there is a relevant thermal performance improvement, as expected. The thickness of the TBS also presents a noteworthy influence on the LSF partition thermal resistance.

Funder

FEDER/FCT

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3