Experimental and Numerical Research on a Sand Cushion Geotechnical Seismic Isolation System in Strong Earthquakes and Cold Regions

Author:

Yin Zhiyong1ORCID,Zhang Yonggang2,Wu Jianqiu2,Sun Min2,Han Lei3,Sun Haifeng4,Jing Liping56ORCID,Dong Rui56

Affiliation:

1. School of Civil and Architecture Engineering, Hunan University of Arts and Science, Changde 415000, China

2. Engineering Research Institute, China Construction Eighth Engineering Division Corp., Ltd., Shanghai 200122, China

3. Zhejiang Construction Co., Ltd. of China Construction Eighth Engineering Division, Hangzhou 311200, China

4. College of Civil Engineering, Heilongjiang Institute of Science and Technology, Harbin 150022, China

5. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China

6. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China

Abstract

Masonry buildings in high-intensity seismic and cold regions of China face the dual challenges of frost heaving and seismic hazards. To explore the potential of a sand cushion instead of the frozen soil layer to deal with these problems, a cost-effective sand cushion-based Geotechnical Seismic Isolation System (GSI-SC) was developed in this study, where a sand cushion is introduced between the structural foundation and natural soil, while the space around the foundation is backfilled with sand. Shaking table tests on a one-story masonry structure equipped and non-equipped with the GSI-SC system were undertaken to investigate its effectiveness in seismic isolation, where the input wave adopted the north–south component of the EL Centro wave recorded in 1940, and the peak input acceleration (PIA) was set as 0.1 g, 0.2 g, and 0.4 g. It is found that the GSI-SC system significantly reduced the seismic response of the structure, effectively achieving seismic isolation. For a PIA of 0.4 g, the GSI-SC system reduced the acceleration of the roof panel and the inter-story displacement of the structure by 33% and 39%, respectively. Numerical simulations were performed to evaluate the seismic response of buildings equipped and non-equipped with the GSI-SC system. The simulation results matched well with the experimental results, verifying the effectiveness of the newly developed seismic isolation system. The GSI-SC system can provide the potential to reduce frost heave and earthquake disasters for buildings in high-intensity seismic and cold regions.

Funder

Hunan Provincial Natural Science Foundation of China

Science and Technology Innovation Program of Changde City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3