Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction

Author:

Deng Jinshang12,Pan Zezhou1,Mai Guanghao1,Long Yaojian2,Kuang Bingtian2,Zhu Jianke2,Guo Quanxing2,Liang Junjian2,Huang Fengling13,Qiao Sihua1,Li Xiaohui1,Liu Feng1

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Guangdong Wengu Testing and Identification Co., Ltd., Guangzhou 511453, China

3. Guangzhou City Construction College, Guangzhou 510900, China

Abstract

The new composite application of seawater sea sand concrete (SSC) and fibre-reinforced polymer (FRP) bars had broad development prospects. In this paper, the load levels and stirrup spacing were the main research parameters. The fatigue behaviour of carbon fibre-reinforced polymer (CFRP) bar-reinforced SSC beams was studied by four-point bending tests, and the development laws of fatigue crack width and fatigue deflection were deeply discussed. Results revealed that excessive stirrup spacing might change static failure modes of CFRP bar-reinforced SSC beams, resulting in a reduction in mechanical behaviour. This paper preliminarily suggested that the maximum stirrup spacing should be 200 mm. The fatigue failure mode of CFRP bar-reinforced SSC beams in this paper was mainly shear fatigue failure. The fatigue crack width and fatigue deflection increased with the cycle number. When the cycle number reached 80% of fatigue life, the fatigue crack width increased by about 100%. When the beam specimens were close to fatigue failure, the increase in fatigue deflection ranged from 166.5% to 188.9%. Load levels had a significant impact on fatigue life, and a fatigue limit of 0.5 was proposed as a threshold. In addition, the larger the stirrup spacing, the greater the growth rate of fatigue crack width and fatigue deflection. Therefore, based on the calculation equation for the maximum crack width in the code, the influence of stirrup spacing, load levels and n/N was further considered in this paper. Considering the influence of stirrup spacing and load levels, a calculation equation for fatigue deflection was proposed. Finally, the fatigue design concept was improved, and the fatigue life was further subdivided into the fatigue life on bearing capacity and normal service.

Funder

National Natural Science Foundation of China

Special Foundation for Scientific and Technological Innovation Strategy of Guangdong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3