Experimental Study on Mechanical Properties of Structured Clay under Different Unloading Rates and Unloading Stress Paths

Author:

Li Lu1,Zang Meng1,Zhang Rongtang1,Lu Haijun1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

Consolidated undrained triaxial shear tests were performed on undisturbed saturated structured clay at three unloading rates (0.1, 0.25, and 2.5 kPa/min) using a GDS triaxial system to determine the effects of different unloading rates and unloading stress paths on the stress–strain relationship, pore pressure variation, and failure strength characteristics of Zhanjiang structured clay. Microstructural changes in the clay were observed during shear tests at different unloading rates. Furthermore, the obtained stress–strain relationship indicates strain-softening under different unloading stress paths. Under the same axial strain, a larger unloading rate caused a larger deviatoric stress. Under the same conditions, the higher the confining pressure, the greater the peak pore pressure, the smaller the unloading rate, the greater the pore pressure development, and the greater the variation in the pore pressure. Moreover, the undrained shear strength increased with an increase in the unloading rate from 0.1 to 2.5 kPa/min. The change in the unloading rate had a greater effect on the undrained strength under the passive tensile path than that under the passive compression path. The microstructure of the Zhanjiang structured clay changed after shear tests at different unloading rates, exhibiting various degrees of adjustment in the particle arrangement, contact relations, pore sizes, and shapes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3