Effect of Thermal Bridges of Different External Wall Types on the Thermal Performance of Residential Building Envelope in a Hot Climate

Author:

Al-Awadi Hameed,Alajmi Ali,Abou-Ziyan Hosny

Abstract

In this paper, the thermal performance of residential building envelopes including thermal bridges (TBs) in a hot climate, using four different exterior wall types, is modelled and assessed. TBs at the junctions between columns and walls and between walls and slabs of the ground floor, roof, and intermediate floors are considered. The tested wall types are classical (two layers of cement blocks with insulation in between), autoclaved aerated concrete bearing (AAC-B), AAC column and beam (AAC-CB), and exterior insulation and finish system (EIFS). The results indicated that thermal bridges have a considerable effect and determine the best external wall type which was the EIFS that has a continuous exterior insulation. EIFS proved to reduce the heat transmission with the outdoor environment for residential buildings by 101.8, 51.2, and 13.9% than the AAC-CB, AAC-B, and classical walls, respectively. Thermal bridges effect on the building envelope using the EIFS is insignificant as the thermal resistance of the envelope and wall differs by less than 1% for small areas. The overall heat transfer coefficients for small buildings are larger than those for large buildings by 8–26%. As the number of intermediate floors increases from 1 to 50, the envelope overall heat transfer coefficient increases by 4.5% for the EIFS, 14.1% for classical, and 19.5% for AAC-CB walls. The AAC-CB, as the common practice wall structure in many hot climate countries, has the lowest performance among the tested wall types.

Funder

Public Authority for Applied Education and Training

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3