Behavior of Concrete-Filled U-Shaped Steel Beam to CFSST Column Connections

Author:

Lin Yan12,Zhao Zhijie1,Gao Xuhui1,Wang Zhen3,Qu Shuang12ORCID

Affiliation:

1. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering, Shandong Jianzhu University, Ministry of Education, Jinan 250101, China

3. College of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250351, China

Abstract

Two new types of connection between concrete-filled U-shaped steel (CFUS) beams and concrete-filled square steel tube (CFSST) columns were presented in this study, including rebar-sleeve with internal diaphragm connection and rebar-through with internal diaphragm connection. Based on the experiments of the rebar-plate with internal diaphragm connections between CFUS beams and CFSST columns under cyclic loading, the nonlinear finite element models of the tested specimens were developed and validated by comparing them with the experimental results. The numerical results were in agreement with the experimental results in terms of failure modes, stress distribution, and load-displacement skeleton curves. Based on the FEA results, the mechanical behavior of the two new types of connection were comprehensively discussed and compared. Furthermore, this parametric study was conducted for the rebar-sleeve with internal diaphragm connection to investigate the effect of specific parameters on the capacity of the connection. The parameters included: The thickness of U-shaped steel, the ratio of longitudinal reinforcement in the concrete slab, the strength of concrete in the beam, the strength of the U-shaped steel, and the thickness of the internal diaphragm. The results indicate that the thickness of the U-shaped steel (tb), the ratio of the longitudinal reinforcement in concrete slab (ρ), and the strength of the U-shaped steel have significant effects on the loading capacity of the connection—the loading capacity increases by about 20% when tb increases from 6 mm to 8 mm, increases by about 45% when ρ increases from 1.5% to 4.8% under negative P, and increases by about 20% when the steel yield strength (fy) increases from 235 Mpa to 420 Mpa.

Funder

National Key Research and Development Program

Research and Innovation Team Supported by the Ministry of Education

Science and Technology Project of the Ministry of Housing and Urban-Rural Development

Doctoral Foundation of Shandong Jianzhu University

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference25 articles.

1. Research advances of steel-concrete composite structural systems;Nie;J. Build. Struct.,2010

2. Composite profiled beams;Oehlers;J. Struct. Eng.,1993

3. Flexural strength of profiled beams;Oehlers;J. Struct. Eng.,1994

4. Ductility of profiled composite beams. Part I: Experimental study;Uy;J. Struct. Eng.,1995

5. Ductility of profiled composite beams. Part II: Analytical study;Uy;J. Struct. Eng.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3